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Final Report for FA9550-14-1-0009:
Probabilistic Signal Recovery and Random

Matrices

Our research program supported by this grant spanned several areas of
mathematics and data science. It resulted in significant discoveries in high-
dimensional inference and high-dimensional probability and lead to a variety
of applications in statistics, biomedical data analysis, quantization, dimen-
sion reduction, and networks science.

1. High-dimensional inference and geometry

Our main and surprising discovery was how that many classical methods
that were designed for structured linear regression provably work even for
non-linear data [9, 13, 21]. The non-linearity can be very general: discon-
tinuous, not one-to-one, and even unknown. In spite of this, we showed
that methods for linear regression, such as Lasso, stay unharmed even in
presence of such nonlinearities. This dramatically extends the range of sta-
tistical models for which data analysis can be done rigorously. Our findings
have found a variety of applications for quantization and compressed sensing
[20], as well as in the analysis of biomedical data [3, 4].

As an example, our results apply for binary, 0/1 measurements, which
arise e.g. in classification problems and quantization. For such measure-
ments, we also expanded the range of probability distributions the non-linear
recovery results apply for. Our original analysis for non-linear data [11, 12]
was done under the premise of gaussian measurements. In the new work [1],
we showed extended it to general nonlinear sub-gaussian measurements.

In the area of discrete and computational geometry, we analyzed how
many random hyperplanes are needed to cut a given set K in Rn into much
smaller pieces [10]. It turned out that the optimal number of cutting hyper-
planes is proportional to the single geometric parameter of the set K, namely
the effective dimension d(K). This complexity parameter is also known to
govern the efficacy of algorithms in high dimensional inference and com-
pressed sensing. In particular, the optimal number of measurements in our
work on non-linear data happened to be proportional to the same parameter
– the effective dimension of the feasible set K, see [21]. Through this link,
our work on cutting hyperplanes has implications in quantization, coding,
dimension reduction, and compressed sensing.

Another natural measure of complexity of a convex set K is the number of
faces of a polytope P that approximates K to within a constant precision.
To encode a high-dimensional convex body in a form allowing computer
processing, one has to construct an oracle, i.e., an algorithm that using co-
ordinate of a point as an input, outputs whether the point is contained in
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the body, or not. Construction of an oracle for a general convex body is
known to be computationally hard. A potentially possible way to bypass
this obstacle was suggested by Barvinok. He proposed to approximate a
given body by a projection of a section of a simplex in a higher dimension.
This new body, being the feasible set of a linear programming problem,
allows an efficient construction of the oracle. The complexity of this con-
struction is determined by the dimension of the simplex. An approximation
with a simplex of the dimension polynomial in the dimension of the origi-
nal body would have allowed to circumvent the computational hardness of
the oracle construction. In the previous work of the co-PI in collaboration
with A. Litvak and N. Tomczak-Jaegermann showed that, in general, such
approximation is impossible. This, however, left open a possibility of con-
struction such approximation for some important classes of convex bodies,
primarily, for convex bodies with coordinate symmetries. Nevertheless, we
showed in [15] that even such highly symmetric convex bodies require a
simplex of exponential dimension to produce such approximation, making
bypassing the hardness obstacle impossible.

2. Networks

In the area of network analysis, we developed and rigorously analyzed
algorithmic methods for finding structure in sparse networks [6, 7, 5]. There
had been an abundance of algorithmic methods for data mining in relatively
dense networks, where an average vertex has degree & log n, i.e. is connected
to at least & log n other vertices or so. Most of these methods, including
the most popular Principal Component Analysis (PCA), manifestly fail for
sparser networks, in particular for those with constant average degrees.

Practitioners had suggested that the problem for sparse networks lies in
the vertices of abnormally high degrees, and suggested that regularizing
those vertices by pruning or lowering their weight could solve the problem.
We confirmed this rigorously by showing a very general result: any regular-
ization pre-processing which brings the degrees down to normal provably,
leads to spectral concentration, and therefore makes spectral methods like
PCA work [7].

In a related development [5], we proved for the first time that meth-
ods based on semidefinite programming also work for structure discovery in
sparse networks. Our analysis is based on Grothendieck’s inequality. In all
previous applications in theoretical computer science had only yielded ap-
proximation to within some fixed constant factor. We demonstrated a new
method where Grothendieck’s inequality can be used to give an arbitrarily
fine approximation.
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For both methods, our theory is applicable for a far wider class of networks
than the benchmark class of stochastic block models that is usually discussed
in network science results.

3. Permanents, hafnians and perfect matchings

In numerical linear algebra, we studied the fastest known randomized
approximation algorithm for computing the permanents of matrices with
non-negative entries, namely the Barvinok-Godsil-Gutman estimator. The
permanent is an important computational characteristic which counts, for
instance, the number of perfect matchings in a bipartite graph. Besides this,
permanents arise naturally in the study of contingency tables, evaluation
of the expected product of dependent normal random variables, etc. It is
known that the evaluation of a permanent is a #-P hard problem, so taking
into account the limitations of the computing power, one can hope only
to estimate it. Barvinok-Godsil-Gutman estimator probabilistic estimator
is the fastest known means of estimating the permanent. In the worst-
case scenario, it outputs the permanent with the multiplicative error which
is exponential in the size of the matrix. Yet, it has been observed that,
typically, the actual performance of this estimator is much better than the
wort case. We discovered a sufficient condition on a deterministic graph or
matrix guaranteeing a smaller error for estimating the permanent [19].

In a related development in computational graph theory [16], we analyzed
a probabilistic algorithm for estimating the number of perfect matchings
in general graphs. Unlike bipartite graphs, where the number of perfect
matchings is represented by the permanent of the adjacency matrix, in a
general case, it is evaluated by a much more complex quantity, namely the
hafnian of the same matrix. Because of this additional complexity, almost all
known methods of estimating the number of perfect matchings which were
developed for bipartite graphs fail for the general ones. The only exception
is the Barvinok estimator which is currently the unique polynomial time
probabilistic estimator for the number of perfect matchings. This fact makes
the error analysis for this estimator especially important. As for bipartite
graphs, the worst case error of this estimator is exponential in the size of the
graph. We showed that if the graph possesses certain expansion properties,
then the error of the Barvinok estimator is much smaller than in the worst
case.

4. Random matrix theory

Several significant advances were made in random matrix theory and its
applications. We established delocalization of eigenvectors for a wide class
of random matrices [17, 18]. This means that with high probability, every
eigenvector of a random matrix is delocalized in the sense that any subset of
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its coordinates carries a non-negligible portion of its L2 norm. Our results
pertain to a wide class of random matrices, including matrices with inde-
pendent entries, symmetric and skew-symmetric matrices, as well as some
other naturally arising ensembles.

Next, we analyzed in [2] the condition number of sparse random matrices,
a quantity important for controlling the running time and the precision of
various numerical linear algebra algorithms. This is an important problem
especially for sparse random matrix, which are among the basic tools in
statistics, computer sciences and signal processing. As we increase sparsity,
we found that the condition number stays nearly the same as for a dense
matrix almost until the transition point where an entire zero row appears
(at which point it obviously jumps to infinity).

Furthermore, we showed how to improve the behavior of a random matrix
by modifying a small fraction of its entries [14]. We studied the conditions
where the operator norm of a random matrix A can be reduced to the
optimal order by zeroing out a small submatrix of A. We found that this is
possible if and only if the entries of A have zero mean and finite variance.
Moreover, we obtained an almost optimal dependence between the size of
the removed submatrix and the resulting operator norm.

Finally, we developed a simple and general tool for bounding the devia-
tion of random matrices on arbitrary geometric sets [8]. This new devia-
tion inequality unified many existing results, such as Johnson-Lindenstrauss
Lemma which plays a major role in dimension reduction, M∗ bound in high-
dimensional convex geometry, and a non-asymptotic version of Bai-Yin lim-
iting law in random matrix theory. On top of that, our deviation inequality
led to several new applications, in particular for dimension reduction, model
selection, structured regression and compressed sensing [8].
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